
Richard Mortimer

Technical Consultant

richard.mortimer@omnis.net

Object Oriented
Programming With

Omnis Studio

© Omnis Software 2002-2019

mailto:richard.mortimer@omnis.net

Topics

2

• What is Object Orientation?

• The Principles of Object Orientation

• Object Orientation in Omnis Studio

• Using Inheritance and Subclasses

• Invoking methods and messaging

• Using Subwindows

• Using Object Classes

Structured Programming

3

• Top-down approach

• Data and functions are kept separate

• Breaks a program down into components until
the components cannot be decomposed
anymore

• Improved the quality of software

• If design is found to be incorrect after
programming has started, then the design may
have to be entirely restructured

What Is Object Orientation?

4

• Application based on software objects

• These simulate real-world objects

• It is a different way to construct systems

• It is a paradigm shift

• It is a technology

• More importantly it is a methodology

A Bit of OO History

5

• Invented in the late 1960s in a language called Simula by
Ole-Johan Dahl and Kristen Nygaard of the Norwegian
Computing Centre in Oslo

• Early 1970s, SmallTalk by Alan Kay at Xerox PARC,
furthered the idea of using software objects simulating
real-world objects to using software objects for
prototyping and developing applications

• Mid 1980s, other OO programming languages emerged,
such as C++ and Eiffel

• Late 1990s, Java developed for the web and Omnis Studio

Objects

6

• Objects are "black boxes" that communicate with each
other to perform tasks

• Objects combine both ''state'' (i.e. data) and ''behavior''
(i.e. procedures or ''methods'') into a single entity

• This speeds the development of new programs, and
improves

• Consistency

• Maintenance

• Reusability

Principles of Object Orientation

7

• Abstraction

• Classes

• Encapsulation

• Instances

• Messaging

• Polymorphism

• Inheritance

Abstraction

8

• Abstraction is the ability of a language to take a concept and create

an abstract representation of it within a program

• It involves identifying or abstracting common features of objects and

procedures and then combining them into a single entity that can

represent them

• For example, a programmer would use abstraction to note that two

functions perform almost the same task and can be combined into a

single function

• Each object in the system serves as a model of an abstract "actor"

that can perform work, report on and change its state, and

"communicate" with other objects in the system

• A Customer object, for instance, is an abstract representation of a

real-world customer

Classes

• You can think of a class as a factory
that can produce just one kind of object

• An object is defined by its class, which
determines everything about an object

• Classes provide the specifications for
the objects’ behaviors and attributes

• Class is an abstraction of a real-world
entity

My class
My class

9

Instances

10

• Objects are individual instances of a class

• Each instance has a unique identifier

• For example, you may create an object called Spot from
the class Dog

• Object-oriented languages have some means, usually
called a factory, to "manufacture" object instances from a
class definition

• You could make more than one object from the Dog class,
and call them Spot, Rover, Wellard, etc.

• Instances communicate with each other using Messaging

Encapsulation

• We can think of an object as having an external
interface and an internal environment that is hidden
from the outside world

• This information hiding is known as encapsulation
• Artefacts that are hidden

• Data (variables)
• Private methods

• The hidden data is protected
• Artefacts that are not hidden

• Public methods

• The internals may be modified without affecting the
outside world

Interface

11

Methods

Data

Messaging

12

• Instances communicate with each other via messaging

• The valid messages are defined in the class

• When an instance receives a messages that it understands, it performs

an operation

• For example, the Dog class defines what it is to be a Dog object, so that

the Dog objects understands, and can act upon messages such as

"bark", "fetch", and "roll-over“

• The message contains

• The name of the operation (Method name)

• Any additional information that the operation requires

(Parameters)

• An operation may return data

• This is a way to access encapsulated data

Late Binding

• Traditional languages use Static
binding to bind a reference to a
particular variable or method at
design (compile) time

• With Dynamic or Late binding the
decision as to which variable or
method to use is postponed to
runtime

• It is often impossible at design
time to say with any degree of
certainty what variable or
method will actually be used

B: fred
B: fred

Invoke method fred

C: fred
C: fred

13

??

??

A: fred

Polymorphism

• Each class of object that responds
to a message has its own
implementation of the method
with a common method name

• When the method is called the
object responds with its own
implementation of the method

• The invoking object doesn’t need
to know what kind of object is
receiving the message

aGrid:

Invoke method displayIt

14

aGrid:

displayIT

aReport:

displayIT

aGraph:

displayIT

Inheritance

• The ability to define a class as a

specialization of another class

• Inheritance is hierarchical

• Subclass inherits properties from super

class

• Sometimes terms derived class and base

class used instead of subclass & super class

• Relationship between subclass and super

class “is a kind of”

• For example, a Tiger is a kind of Cat

• Inheritance hierarchies can be expressed

in different ways

Animal

MammalFish Reptile

CatSheep Dog

TigerLion Leopard

Animal

CarnivoreHerbivore Omnivore

CatSheep Dog

TigerLion Leopard

15

Software Class Inheritance

© Omnis Software 2002 16

• What if there is already a class that can respond to a
number of different messages?

• What if you wanted to make a new, similar class which
adds just a couple more messages?

• Why rewrite the entire class?

• Inheritance provides a simple and elegant way to
reuse code and to model the real world in a
meaningful way

• Some additional methods may be defined to extend
the capabilities of the class

What is Inherited?

17

• Visual attributes

• Certain variables

• External interface

• Public methods

Overriding Properties and
Methods

18

• To create a subclass is specialization

• To combine common parts of derived classes
into a common base (or parent) is
generalization

• Overriding is the term used in OO languages
for redefining a method in a derived class,
thus providing specialized behavior

• The property or method in the subclass
replaces the inherited one

Single Inheritance

• In Single Inheritance a child
subclass can only inherit
from a single parent super
class

• Any super class can have
multiple subclasses

• Simple and clean
mechanism

19

A

B C D

D

Multiple Inheritance

• Multiple Inheritance occurs when a class inherits

from more than one parent super class

• What difficulties are posed by Multiple Inheritance?

• A. Produces paradoxes through repeated

inheritance of properties, e.g.

• 2 classes B and C inherit from class A and there
is another class D that is inheriting A, B and C

• Now if class A has a method fred() which class B
and class C both inherit then class D will also
inherit it from A, B and C

• When fred() in D is called, which fred should be
called, i.e. A's, B’s or C's?

20

C

Aggregation and Containers

• An alternative hierarchy to inheritance in
which components are collected together

• Not inheritance (an engine is not a special
kind of car)

• Objects in an aggregation are close-coupled,
they will only ‘work’ in the aggregation

• Containers are like shopping baskets that can
hold many different kinds of objects

• Objects in a container are loosely coupled,
each object is independently useful

Car

EngineBody Transmi

ssion

Cylinder

Head

Block Cranksh

aft

Camsha

ft

21

Valve Spring

What is an Object Oriented
Language?

22

• In 1987 Peter Wenger proposed a definition for
object-oriented languages

• For a programming language to be object oriented he
required that it:

• Be object based, meaning that you can easily
make encapsulated program objects in it

• Be class based, meaning that every object belongs
to or is manufactured from a class

• Support inheritance, meaning that classes may be
arranged in a super class-subclass hierarchy

Object Orientation in Omnis
Studio

23

• Now we are going to look at the features of
Omnis Studio that enable developers to
build Object Oriented applications
• Classes
• Inheritance
• Instances
• Messaging

Omnis Studio Classes

24

• GUI classes

• Window*, menu*, toolbar*, remote form*,
report*

• Data classes

• Schema†, query†, table*, file, search

• Non visual logic classes

• Object*, task*, remote task*, code

* OO classes that require instantiation
† Schema and query instantiated via table class

What is Inherited by a Subclass?

25

• Omnis Studio only provides for single inheritance

• Public methods

• Class variables

• Instance variables

• Properties

• Subordinate objects

• Fields on window classes

• Tools on toolbars

• Lines on menu classes

Public and Private Methods

26

• Public methods are prefixed by a $ sign

• Other methods are Private

• Invoke a private method using the Do method
command e.g.
Do method fred(p1,p2,p3)

• Parameters are supplied in the parentheses

• This is not a message based call

• Do not use the Do method command to call public
methods even if they are in the same class

• Public methods should be called using a message

Instantiating a Class

27

• Using a 4GL command
Open window instance myWind/Cen (p1,p2)

• Using a notation command
Do $windows.myWind.$open(‘*’,kWindowCenter,p1,p2)

• Command refers to the class name

• 1st parameter is name of instance or ‘*’ to generate
instance name

• $construct method runs automatically when an instance
is created

Other Examples of Instantiation

28

• Cascade menu instantiated at same time as parent menu

• Menu on window menu bar instantiated at same time as parent
window

• Context menu instantiated when user right-clicks on parent object
(window or field)

• Report instance

• Using a 4GL commands
Set report name myRep

Prepare for print {* (#1,#2)}

• Using a notation command
Do $reports.myRep.$open(‘*’,p1,p2)

• Note that the following command also instantiates a report but
behaves differently
Print report {* (p1,p2)}

Instance Groups

29

• There are group notation items for instantiated classes

• These contain a single member for each instance
• Open window instances - $iwindows

• Task instances - $itasks

• Name is the same as the library name

• Installed menu instances - $imenus

• Only menus installed on main Omnis menu bar

• Installed toolbar instances - $itoolbars

• Only menus installed on main Omnis toolbar

• Window instances have groups for objects installed on them
• $iwindows.myWind.$menus.myMenu

• $iwindows.myWind.$toolbars.myToolbar

Destroying an Instance

30

• Using a 4GL command
Close window instance myWind

• Using a notation command
Do $iwindows.myWind.$close()

• Command refers to the Instance name

• $destruct method runs automatically when an
instance is destroyed except for Table and Object

• For Table and Object instances you can run it
manually from the parent instance (e.g. in
window $destruct method)
Do myRow.$destruct()

Sending a Message

31

• You can send a message to an object using the Do

command

• A message can only be sent to an Instance

• You must have a reference (like a “handle”) to the

object that you are sending the message to

Do $iwindows.myWind.$fred(p1,p2,p3)

• This is like the address on a letter

• Parameters are supplied in the parentheses

• $iwindows.myWind resolves to a reference

• You cannot send a message to a context menu instance

since it is not accessible via group notation

Broadcasting a Message

32

• You can send the same message to a number of
objects in a group using the $sendall method
Do $iwindows.$sendall($ref.$close())

– The method iterates all the member objects of a group

– For each iteration $ref references the current object

• The method has a second optional Boolean
parameter so that you can be selective
Do $iwindows.$sendall($ref.$close(),

$ref.$class().$name=‘myClass’)

• The message will only be sent to the object if
the 2nd parameter evaluates to kTrue or a non-
zero value

Creating a Super Class

• Identify common features and behavior

• Create an abstraction containing common features

• This becomes the basis for your Super Class

33

Creating a Subclass

• Right-click the Super
Class in the Browser
window

• Select Make Subclass

• Give the Subclass an
appropriate name

• Note that the Super
Class is displayed in
the Browser
Window

34

Make the Subclass a
Specialization
• Add the features that make the Subclass a

specialization of the Super Class

• Add fields

• Override properties and methods

35

Overloading properties

• You can override or “overload” many
inherited properties using the
Property Manager window

• Inherited properties are shown in blue

• Select the object in the Window
Editor

• Right-click the required property and
select Overload Property

• Enter the new value on the right as
normal

36

What You Cannot Overload

• You cannot overload properties
of objects contained in an
inherited class

• E.g. the position properties top,
left, height and width of our
pushbutton fields cannot be
overloaded

• Hint: Use floating field
properties to reposition fields
automatically when a subclass
window is resized or you can
use notation to modify them in
• $construct method

37

Inheriting properties

• If a property has been previously
overloaded then it can be inherited
from the Super Class using the
Property Manager window

• Non-Inherited properties are shown in

black

• Select the object in the Window

Editor

• Right-click the property and select

Inherit Property

• The inherited value will be shown on

the right in blue

38

Setting the superclass Property

• An alternative way of
establishing a Subclass is to
set its $superclass property

• Right-click the class in the
Browser and select
Properties

• Select the required Super

Class from the list

• Not recommended because
common properties are not
automatically inherited (i.e.
they must be manually
inherited)

39

Inherited methods

• Only Public methods
prefixed by a $ sign
are inherited

• Inherited methods
are shown in blue

• When the method is
invoked by a
message, the method
in the Super Class is
executed

40

Ensure Methods are Abstracted

• Super Class methods must be generic abstractions

• Code referring to specific objects should be removed to a

Subclass and the method overridden in the Subclass

• Alternatively, add an instance variable to the Super Class so that
the specific values can be communicated from the Subclass

41

Callout Stubs

• Sometimes there is a requirement to call out to a subclass method
during execution of a Super Class method

• Create a dummy public method containing no code, defined in
Super Class and invoked by other Super Class methods

• Override in Subclass if required

42

Overriding methods

• You can override an inherited method in a Subclass

• Right-click the required method in the Method Editor
and select Override Method

• Enter the new code to the right as normal

• When the method is invoked by a message, the
method in the Subclass is executed

43

Invoking the Super Class
Methods

44

• You can invoke the Super Class version of a method that was

overridden using the command

Do inherited

– Parameters are supplied to both methods as normal

– You cannot pass different parameters using this technique

– However both methods may use Field Reference parameters

to refer to the same data

• If you need to override the parameters that would normally be

sent to the Super Class method then use

Do $inherited.$myMethod(p7,p8,p9)

Inheriting Methods

• A method that has
been overridden in a
Subclass can be
inherited

• Right-click in the

Method Editor and

select Inherit Method

• Note that to do this
the Subclass method
is removed and all
code lines are lost

45

Static vs. Dynamic Variable Refs

46

• Static reference
Calculate iCust as 'Fred'

Calculate myVar as iCust

– Reference to iCust is tokenized

• Dynamic reference
Calculate $cinst.iCust as 'Jill'

Calculate myVar as $cinst.iCust

– Nb. iCust is simply text resolved to the variable at runtime

• Watch your spelling with dynamic references (unlike static
references they are not checked by the IDE)

Calculate $cinst.iCus as 'Sam'

Calculate myVar as $cinst.iCus

– In this case myVar will contain a Null value

Overriding Variables

• Inherited variables shown in blue

• Right-click on variable in the
Method Editor and select Override
Variable

• The variable in the Subclass is now a
different variable to one in Super Class

• This can be done with Class and
Instance variables

• Beware copy and pasted fields and
code lines can automatically override
variables

• To avoid this comment code
before copying to clipboard,
paste in and then uncomment
(don’t forget to uncomment in
source method)

47

Accessing Overridden Variables

48

• Overridden variables are still in scope

• To access the Super Class variable from a Subclass method use
$inherited.myVar

– Note that this will always access the variable from the next
level up in the inheritance tree

• To access the Subclass variable from a Super Class method use
$cinst.myVar

– Note that this will always access the variable from the
lowest level in the inheritance tree

Inheriting Variables

• A variable that has been
overridden in a Subclass
can be inherited

• Right-click on variable in
the Method Editor and
select Inherit Variable

• To do this the Subclass
variable is removed and
references to variable are
affected (changed to #???)

49

Inherited Order

• Inherited fields appear first in tab order

• The tab order of the first inherited field can be set
using the $inheritedorder property

• This needs to be set for each level in the inheritance
hierarchy

50

Subwindows

• A Subwindow is an aggregation

• It is a window class and can

contain normal field and

background objects

• It may contain many fields or just

one or two

• A single Subwindow can be

reused on any number of other

window classes

• It is an alternative reuse

mechanism to Inheritance

• The Omnis Studio “version” of an

ActiveX control
51

Creating a Subwindow

• Create a window as normal

• Size the field so that it fills

the window

• Set the $issubwindow

property to kTrue

• Hint: for subwindows that
implement metafields use
floating properties on the
objects inside it to ensure
the fields resize
automatically

52

Subwindow Interface

• A Subwindow needs to be able to
communicate with its parent window
and vice versa

• We need to build an interface

of public methods

• Inside a subwindow field method

on parent window

– $cfield refers to the subwindow
instance

• Inside a subwindow instance method

– $cwind refers to the parent
window instance

– $cinst refers to the subwindow
instance

53

Using a Subwindow

• Select the Subwindows icon on the Component Store toolbar

• Drag required subwindow across and drop it on the window

• Set up any required Interface calls from the parent window to

the subwindow

54

Initializing a Subwindow

• Initialise a subwindow by calling a public method from the

container field $construct method on the parent window

• Pass initial data as parameters

• This data may be used to initialise data to be displayed inside the
subwindow and other visual aspects of the subwindow instance
(e.g. colour of fields, enable/disable etc.)

55

Subwindow Callback Method

• When an event occurs inside a
subwindow instance the event is
not accessible to the parent
window event handlers

• We need to implement a callback
to the parent window

• When subwindow init is called,
pass the full notational path of a
Callback method that should be
called when an event occurs in the
subwindow

• Path to callback method is cached
by $construct method in an
instance variable

• Callback method may receive data
from subwindow as parameters

56

Combining Subwindows

• Subwindows can be combined

with other fields on the same

window

• Other objects communicate

with the Subwindow via the

public interface

• The Subwindow can
communicate with other
objects via the callback

57

Table Classes

58

• Instantiated as a row or list variable

– Table instance and row or list variable are one and the same

• Instance created when row or list is defined
Do myRow.$definefromsqlclass(‘myTab’,,p1,p2)

– Define from table class, not schema or query

– Parameters may be passed to $construct method, note ‘,,’

• Incorporate a data interface via row or list

• Methods provide an abstraction of SQL

• Enable you to separate the data logic from the GUI

• Public methods of table available via list or row
Do myRow.$select(con(“where myCol = ‘”,myRow.myCol,”’”))

• In table method $cinst refers to instance and row or list variable

• Instance destroyed when variable is cleared

– $destruct method does not run automatically

Object Classes

59

• Similar capabilities to Table class instances but no
data interface (row variable or list)

• Instantiated as a variable of data type object

• May be statically or dynamically defined

• Instance destroyed when variable is cleared

• – $destruct method does not run automatically

Object Instances

60

• Static definition

– Define a variable of required scope

– Set data type to Object and set subtype to your object class

– $construct method runs the first time that you call a method

• Dynamic definition

– Define a variable of required scope

– Set data type to object, leave subtype empty
Do $clib.$objects.myObj.$new() Returns myVar

– $new method performs the same function as $open

– $construct method runs when the instance is created by
$new

Storing Objects in the Database

61

• Since object is a standard data type object instances may be
stored in a database column

• Cannot identify object instances containing specific values
without reading all instances

• By default

– The objects data (instance variables) are stored in the
database

– The methods are provided by the object class and may
change over time

• To save the methods in the database

– Set the object class $selfcontained property to kTrue

– Takes a “snapshot” of methods in the class

– Stored objects occupy more space

Summary

62

• Application based on software objects

• It is a different way to construct systems

• It is a paradigm shift

• It is a technology

• More importantly it is a methodology

• Benefits

– Reusability

– Consistency

– Maintainability

– RAD (eventually once super classes have been created)

