Object Oriented
Programming With
Omnis Studio

Richard Mortimer
Technical Consultant

richard.mortimer@omnis.net

© Omnis Software 2002-2019

mailto:richard.mortimer@omnis.net

Topics

* What is Object Orientation?

 The Principles of Object Orientation
* Object Orientation in Omnis Studio
* Using Inheritance and Subclasses

* |nvoking methods and messaging

* Using Subwindows

* Using Object Classes

@ Omnis

Structured Programming

e Top-down approach
* Data and functions are kept separate

* Breaks a program down into components until
the components cannot be decomposed
anymore

 Improved the quality of software

* If design is found to be incorrect after
programming has started, then the design may
have to be entirely restructured

@ Omnis
What Is Object Orientation?

* Application based on software objects
 These simulate real-world objects

e Itis a different way to construct systems
e Itis a paradigm shift

* |tisatechnology

* More importantly it is a methodology

@ Omnis
A Bit of OO History

* Invented in the late 1960s in a language called Simula by
Ole-Johan Dahl and Kristen Nygaard of the Norwegian
Computing Centre in Oslo

e Early 1970s, SmallTalk by Alan Kay at Xerox PARC,
furthered the idea of using software objects simulating
real-world objects to using software objects for
prototyping and developing applications

* Mid 1980s, other OO programming languages emerged,
such as C++ and Eiffel

* Late 1990s, Java developed for the web and Omnis Studio

@ Omnis
Objects

* Objects are "black boxes" that communicate with each
other to perform tasks

 Objects combine both "state" (i.e. data) and "behavior"
(i.e. procedures or "'methods") into a single entity

* This speeds the development of new programs, and
improves

* Consistency
* Maintenance
* Reusability

@ Omnis

Principles of Object Orientation

* Abstraction
e Classes
* Encapsulation
* Instances
* Messaging
e Polymorphism

* |Inheritance

@ Omnis

Abstraction

e Abstraction is the ability of a language to take a concept and create
an abstract representation of it within a program

* Itinvolves identifying or abstracting common features of objects and
procedures and then combining them into a single entity that can
represent them

* For example, a programmer would use abstraction to note that two
functions perform almost the same task and can be combined into a
single function

* Each object in the system serves as a model of an abstract "actor"
that can perform work, report on and change its state, and
"communicate" with other objects in the system

* A Customer object, for instance, is an abstract representation of a
real-world customer

Classes

* You can think of a class as a factory
that can produce just one kind of object
* Anobject is defined by its class, which
determines everything about an object
* Classes provide the specifications for
the objects’ behaviors and attributes
 (lassis an abstraction of a real-world
entity

Instances

* Objects are individual instances of a class
* Each instance has a unique identifier

* For example, you may create an object called Spot from
the class Dog

* Object-oriented languages have some means, usually
called a factory, to "manufacture" object instances from a
class definition

* You could make more than one object from the Dog class,
and call them Spot, Rover, Wellard, etc.

* Instances communicate with each other using Messaging

10

@ Omnis

Encapsulation

* We can think of an object as having an external
interface and an internal environment that is hidden
from the outside world

* This information hiding is known as encapsulation
* Artefacts that are hidden

e Data (variables)
e Private methods interface

 The hidden data is protected

e Artefacts that are not hidden

e Public methods

* The internals may be modified without affecting the
outside world

11

@ Omnis

Messaging

* Instances communicate with each other via messaging
* The valid messages are defined in the class
 When an instance receives a messages that it understands, it performs
an operation
* For example, the Dog class defines what it is to be a Dog object, so that
the Dog objects understands, and can act upon messages such as
"bark", "fetch", and "roll-over”
* The message contains
* The name of the operation (Method name)
* Any additional information that the operation requires
(Parameters)
* An operation may return data

* Thisis a way to access encapsulated data
12

@ Omnis
Late Binding

* Traditional languages use Static
binding to bind a reference to a

particular variable or method at
design (compile) time

* With Dynamic or Late binding the / 2
decision as to which variable or '
method to use is postponed to Invoke method fred

runtime / 7 \
* I|tis often impossible at design
time to say with any degree of
certainty what variable or
13

method will actually be used

@ Omnis

Polymorphism

* Each class of object that responds
to a message has its own e
implementation of the method
with a common method name

* When the method is called the /
object responds with its own Invoke method displaylt

implementation of the method /
* The invoking object doesn’t need

to know what kind of object is
receiving the message
14

Inheritance

A \
e The ability to define a class as a /

Fish Mammal Reptile

specialization of another class 4 \

* Inheritance is hierarchical Sheep Cat Dog

e Subclass inherits properties from super / ! \

class Lion Tiger Leopard

e Sometimes terms derived class and base

class used instead of subclass & super class Animal
* Relationship between subclass and super / i \
class “is a kind of” Herbivore CarTvore Omnivore
* For example, a Tiger is a kind of Cat T \
* Inheritance hierarchies can be expressed Sheep Cat Dog
in different ways / \

Lion Tiger Leopard
15

@ Omnis

Software Class Inheritance

 What if there is already a class that can respond to a
number of different messages?

 What if you wanted to make a new, similar class which
adds just a couple more messages?

* Why rewrite the entire class?

* Inheritance provides a simple and elegant way to

reuse code and to model the real world in a
meaningful way

 Some additional methods may be defined to extend
the capabilities of the class

© Omnis Software 2002 16

What is Inherited?

 Visual attributes
e (Certain variables
e External interface

e Public methods

17

@ Omnis

Overriding Properties and
Methods

 To create a subclass is specialization

e To combine common parts of derived classes
into a common base (or parent) is
generalization

* OQOverriding is the term used in OO languages
for redefining a method in a derived class,
thus providing specialized behavior

 The property or method in the subclass
replaces the inherited one

18

Single Inheritance

In Single Inheritance a child
subclass can only inherit
from a single parent super
class

Any super class can have
multiple subclasses
Simple and clean
mechanism

19

Multiple Inheritance

* Multiple Inheritance occurs when a class inherits
from more than one parent super class

* What difficulties are posed by Multiple Inheritance?

* A.Produces paradoxes through repeated
inheritance of properties, e.g.

e 2 classes B and Cinherit from class A and there
is another class D that is inheriting A, Band C

* Now if class A has a method fred() which class B
and class C both inherit then class D will also
inherit it from A, Band C

 When fred() in D is called, which fred should be
called, i.e. A's, B's or C's?

20

@ Omnis

Aggregation and Containers

An alternative hierarchy to inheritance in
which components are collected together

Not inheritance (an engine is not a special
kind of car)

Objects in an aggregation are close-coupled,
they will only ‘work’ in the aggregation

Containers are like shopping baskets that can
hold many different kinds of objects

Objects in a container are loosely coupled,
each object is independently useful

Car

/TN

Body Engine Transmi

/1N

Block Cylinder Cranksh

/HT \aft

Valve Camsha Spring
ft

21

@ Omnis

What is an Object Oriented
Language?
 In 1987 Peter Wenger proposed a definition for

object-oriented languages

 For a programming language to be object oriented he
required that it:

* Be object based, meaning that you can easily
make encapsulated program objects in it

 Beclass based, meaning that every object belongs
to oris manufactured from a class

 Support inheritance, meaning that classes may be
arranged in a super class-subclass hierarchy

22

@ Omnis

Object Orientation in Omnis
Studio

* Now we are going to look at the features of
Omnis Studio that enable developers to
build Object Oriented applications

Classes
Inheritance
Instances
Messaging

23

@ Omnis

Omnis Studio Classes

e GUIclasses

e Window*, menu®*, toolbar*, remote form*,
report™

 Data classes

 Schemat, queryt, table*, file, search
* Non visual logic classes

 QObject*, task*, remote task*, code

* 00 classes that require instantiation
T Schema and query instantiated via table class

24

@ Omnis
What is Inherited by a Subclass?

* Omnis Studio only provides for single inheritance
* Public methods
* Class variables
* Instance variables
* Properties
e Subordinate objects
* Fields on window classes
* Tools on toolbars

* Lines on menu classes

25

@ Omnis
Public and Private Methods

* Public methods are prefixed by a S sign
e Other methods are Private

* Invoke a private method using the Do method

command e.g.
Do method fred(pl,p2,p3)

* Parameters are supplied in the parentheses
e This is not a message based call

* Do not use the Do method command to call public
methods even if they are in the same class

e Public methods should be called using a message

26

@ Omnis

Instantiating a Class

* Using a 4GL command
Open window instance myWind/Cen (pl,p2)

e Using a notation command
Do Swindows.myWind.Sopen (‘*’,kWindowCenter,pl,p2)

e Command refers to the class name

e 1st parameter is name of instance or ‘*’ to generate
instance name

* Sconstruct method runs automatically when an instance
is created

27

@ Omnis

Other Examples of Instantiation

e Cascade menu instantiated at same time as parent menu

e Menu on window menu bar instantiated at same time as parent
window

* Context menu instantiated when user right-clicks on parent object
(window or field)

* Reportinstance

* Using a 4GL commands
Set report name myRep
Prepare for print {* (#1,#2)}

e Using a notation command
Do $reports.myRep.Sopen ('*’,pl,p2)
* Note that the following command also instantiates a report but

behaves differently
Print report {* (pl,p2)}

28

@ Omnis

Instance Groups

There are group notation items for instantiated classes
These contain a single member for each instance

Open window instances - $iwindows
* Task instances - Sitasks

* Name is the same as the library name
* |nstalled menu instances - Simenus

* Only menus installed on main Omnis menu bar
* |nstalled toolbar instances - Sitoolbars

* Only menus installed on main Omnis toolbar

Window instances have groups for objects installed on them
* Siwindows.myWind.Smenus.myMenu

$iwindows.myWind.S$toolbars.myToolbar

29

@ Omnis

Destroying an Instance

 Using a 4GL command
Close window instance myWind

e Using a notation command
Do Siwindows.myWind.Sclose ()

e Command refers to the Instance name

e Sdestruct method runs automatically when an
instance is destroyed except for Table and Object

* For Table and Object instances you can run it
manually from the parent instance (e.g. in

window Sdestruct method)
Do myRow.S$destruct ()

30

Sending a Message

You can send a message to an object using the Do
command

A message can only be sent to an Instance

You must have a reference (like a “handle”) to the
object that you are sending the message to

Do $iwindows.myWind.S$fred(pl,p2,p3)

e This s like the address on a letter

* Parameters are supplied in the parentheses
* Siwindows.myWind resolves to a reference

You cannot send a message to a context menu instance
since it is not accessible via group notation

31

@ Omnis

Broadcasting a Message

* You can send the same message to a number of
objects in a group using the Ssendall method
Do $iwindows.S$sendall (Sref.Sclose())

— The method iterates all the member objects of a group
— For each iteration Sref references the current object

* The method has a second optional Boolean

parameter so that you can be selective
Do Siwindows.$sendall ($ref.Sclose(),
Sref.$Sclass () .Sname="myClass’)

* The message will only be sent to the object if
the 2ndparameter evaluates to kTrue or a non-
zero value

32

@ Omnis

Creating a Super Class

* |dentify common features and behavior
* Create an abstraction containing common features

* This becomes the basis for your Super Class

33

Creating a Subclass

* Right-click the Super
Class in the Browser
window

e Select Make Subclass

e @Give the Subclass an
appropriate name

* Note that the Super
Class is displayed in
the Browser
Window

¥4 OODEMO =10l =|
Library Class Miew
B2 m - E O™
M ame Type Superclass Desc
ity zchema ﬂ
country zchema
Startup_Tazk tagk
wlCityold wirdiowy
wCounty o w3 Lper
wCountpold window
Qpen Window, _Ij
il— Modify. .. 4
Makes a: Methods... 4

Interface Manager...

Prink

— Duplicake
Delete. ..

& Lock..,
3] checkIn...

@ Properties...
;‘& Inheritance Tree..,

34

Make the Subclass a

Specialization

e Add the features that make the Subclass a
specialization of the Super Class

e Add fields

 OQOverride properties and methods

B Window OODEMO.wSuper)

35

@ Omnis

Overloading properties

* You can override or “overload” many & Property Manager - I=IEY
inherited properties using the | Goreral [agpesance|actien] |
Property Manager window pame iy =

. . . lasst kind
* Inherited properties are shown in blue T RN e b
.] . creabedate 17 APR 2002 12:10:58
e Select the object in the Window disksize 1013
external kFalze
Ed |t0 r showascheckedol kFalze
WETZION

* Right-click the required property and e e
select Overload Property T

conmonenticon | kDefSid [2046

* Enter the new value on the right as
normal

36

@ Omnis
What You Cannot Overload

* You cannot overload properties
of objects contained in an
inherited class

* E.g.the position properties top,
left, height and width of our
pushbutton fields cannot be
overloaded

* Hint: Use floating field
properties to reposition fields
automatically when a subclass
window is resized or you can
use notation to modify them in

e Sconstruct method

37

Inheriting properties

* |f a property has been previously
overloaded then it can be inherited
from the Super Class using the
Property Manager window

* Non-Inherited properties are shown in

black

* Select the object in the Window
Editor

* Right-click the property and select
Inherit Property

e The inherited value will be shown on
the right in blue

@ Omnis

_ioix
General |ﬂnppearance I Action I
hame ity .
desc
clazztype kiafindow
moddate 17 aPR 2002 121359
createdate 17 AFR 2002 1210:58
dizk zize 1013
external kFalze
zhowazcheckedo|kF alze
WETZION
superclazs OODEMO. wSuper
inheritedorder 1
izzupercomponent | kF alze
izzubindow kF alze
componenticon | kDefSid [2046

..

38

@ Omnis
Setting the superclass Property

* An alternative way of 4 Property Manager =10] x|
establishing a Subclass is to General |gppearam|g.:tim|
set its Ssuperclass property name wCounty2 .
dezc
* Right-click the class in the classtype Kdindow
moddate 17 &FF 2002 15:31:44
BFOWSEI:' and select createdate 16 APR 2002 1E:42:07
Properties disksize 40564
external kFalze
d Select the reCIUired Su per showazcheckedo kFalze s
YEIZION
Class from the list superclass -
inheritedorder | wCountrpold :|
e Notrecommended because i wSubclass
common properties are not Testtub |
automatically inherited (i.e. designtasknane [T estSubsub ﬂJ
they must be manually ke New Window 1
inherited)

39

Inherited methods

* Only Public methods T
lodfy Yow Ostug Cptirs Qredbpart peteces Jack

prefixed by a $sign [A=@es- .. s
are inherited

* |nherited methods
are shown in blue

* When the method is
invoked by a
message, the method
in the Super Class is
executed

40

@ Omnis

Ensure Methods are Abstracted

e Super Class methods must be generic abstractions

* Code referring to specific objects should be removed to a
Subclass and the method overridden in the Subclass

e Alternatively, add an instance variable to the Super Class so that
the specific values can be communicated from the Subclass

A Window DDDE0. wSuper Class Methods

Bodfy WYew Debug Opbons fresboont [nstarces Shack
AP R e e &

A o Flow i,

[S o M,

| ariaicis | Tupe | Subdppe |inavalCaic ik Warishis | vighes
@ |Man sbin Character = 10000000

Iriare:

- Chenetet all Sat current session JOODEMO

41

@ Omnis
Callout Stubs

 Sometimes there is a requirement to call out to a subclass method
during execution of a Super Class method

* Create a dummy public method containing no code, defined in
Super Class and invoked by other Super Class methods

* Override in Subclass if required

o wadow PotCutetter - ||
A= E P » 0 0| Desaripton [undemicin B n|m|
= Cl;; netods)| Begn reversible block -l Find l
— destact Setmain file {[iMainFile]} g ey -
Joomalsyxd Setreadiwnta files {iIMainFile]} R oo adtsl B
ey End |
SpeeviousRlecond nd reversibla block PS
$indRecord Prapare for msant gt
$émmaRecad Calculate [iIMainFila] DateAd » Insent #
SadiFecod Colculate [iMainFile] Dateln e |
W Do $cinst $insentDefaults() | = oK
~mimaan Do $cinst $rudraw) Vostnate [Caief arae »
- Ned Enter data r 4 c._.dl
* Previcus
B Find I fiag true ;’
Ed _Lpcele Tk | Date added [-l aitin:
3+ Delete cise R O A
+ lren Clear mam te Dot fask updated § et stel o1t pdsied
F 0K Endh
+ Coxel Do $cinst $redraw)

42

@ Omnis

Overriding methods
You can override an inherited method in a Subclass
Right-click the required method in the Method Editor

and select Override Method
Enter the new code to the right as normal

e When the method is invoked by a message, the
method in the Subclass is executed

DEMO . wCountry Class Methods

& Wardow DODEMO . wCountry € 3
Hodfy Wew Debug (gtore Breshport [nstances Reck
ARG aE[s 008
g | T T—
‘ M|
s »

43

Iy ummmmmWWW‘“”

@ Omnis

Invoking the Super Class
Methods

You can invoke the Super Class version of a method that was

overridden using the command
Do inherited

— Parameters are supplied to both methods as normal
— You cannot pass different parameters using this technique
— However both methods may use Field Reference parameters
to refer to the same data
e |f you need to override the parameters that would normally be

sent to the Super Class method then use
Do $inherited.$myMethod (p7,p8,p9)

44

@ Omnis
Inheriting Methods

e A method that has

i . A Window DODEMO.wCountry Class Methods
be en overri d d enina Modify Wiew Debug Options Breakpoint Instances Stack
Subclass can be kzEF 8o e @&
in h e ritEd [=h Class mfthDdS ;| E|.|I:I_E|.T. iﬂinTﬂh|E as 'countr
SVEl o inherite
° nght‘Cth N the : Insert Mew Method
. Celete Selecked Methods. .
M et h O d Ed Ito r a n d Inherit Method., .,
select Inherit Method
¢ N Ote t h at tO d (@) t h iS Laiculatior.J * | Field name; |itainT able
the Subclass method Do inherted
. Do defaul
is removed and all Doredet
d I . I Test for walid calculation Calculation:
coae lines are OSt Set reference : :
Earal?'letelrs atd variables. .. _'3':'“”"-”

45

@ Omnis

Static vs. Dynamic Variable Refs

e Static reference
Calculate iCust as 'Fred'
Calculate myVar as iCust

— Reference to iCust is tokenized
* Dynamic reference
Calculate Scinst.iCust as 'Jill'

Calculate myVar as Scinst.iCust

— Nb. iCust is simply text resolved to the variable at runtime
* Watch your spelling with dynamic references (unlike static
references they are not checked by the IDE)

Calculate Scinst.iCus as 'Sam'

Calculate myVar as Scinst.iCus

— In this case myVar will contain a Null value

46

Overriding Variables

* Inherited variables shown in blue

e Right-click on variable in the Window 00DGW0rSubelas Claas PRI
Method Editor and select Override D0y I CO8 | DFAN gauges e P
) A=03 8 » 00
Variable Vaiatle [Tpe [Sutnpe [imtvartee i
| Mo T e Trupacie

* The variable in the Subclass is now a o o il
different variable to one in Super Class A
=
e This can be done with Class and T
Instance variables Nhi’i
* Beware copy and pasted fields and [ool
code lines can automatically override P Alats
variables

* To avoid this comment code
before copying to clipboard,
paste in and then uncomment
(don’t forget to uncomment in
source method)

47

@ Omnis

Accessing Overridden Variables

* Overridden variables are still in scope
* To access the Super Class variable from a Subclass method use

Sinherited.myVar
— Note that this will always access the variable from the next
level up in the inheritance tree
* To access the Subclass variable from a Super Class method use

$cinst.myVar

— Note that this will always access the variable from the
lowest level in the inheritance tree

48

@ Omnis

Inheriting Variables

* A variable that has been &=0
. . o .. = T o
overrldfjen !n a Subclass oney T o
can be Inherlted T /= | General |.-*-.ppearanu:e|.-’-‘-.u:tiu::n|Te:-:t| pate
. . . . J |name o | | et
* Right-click on variable in £ dtareme |#777 name
calculated kFalze elete
the Method Editor and | et -
select Inherit Variable i3 o s ishad
. : height 3 S
e To do this the Subclass width 258
. . “anable |T_I,I|:|e |Su|:ut_l,lpe ||nit."»-"a|.-"|:a||:
variable is removed and 1 [MainT able Character 10000000
. I01dF e o M/,
references to variable are T
Insert Mew Variable

Delete Variable, .

Inherit Yariable. ..
OODEMO wSuper

affected (changed to #7?7?) ‘|

Wariable iSalfow..
Walue (Undefined)

Instance wariables, ..

Rty

49

@ Omnis
Inherited Order

* Inherited fields appear first in tab order

e The tab order of the first inherited field can be set
using the Sinheritedorder property

* This needs to be set for each level in the inheritance

; 0.
<y P “”‘ | | My rgom
o ’ nane name 10 APR X002 152135
2 ~ [17 APR 20012 1200 011
- A
= L i3
ol .
o g
4 N 0 || S
A V4 ",
3 P . *' ',"l
— | e e —
T e Window 1 =

e

50

Subwindows

e A Subwindow is an aggregation SR

 Jtis awindow class and can H HH H\H H\
contain normal field and H H
background objects

* |t may contain many fields or just
one or two

* Asingle Subwindow can be
reused on any number of other
window classes

\ Hm\ 1l »H

I NN

* |tis an alternative reuse
mechanism to Inheritance

* The Omnis Studio “version” of an

ActiveX control
51

Creating a Subwindow

* Create a window as normal

e Size the field so that it fills
the window

e Set the Sissubwindow
property to kTrue

e Hint: for subwindows that
implement metafields use
floating properties on the
objects inside it to ensure
the fields resize
automatically

| C o s dow

L clorw rdow
- @
|'.‘-'§|'.".‘.'.‘J‘_

KEFgnt! opBotiom
KEFietfaghtBatiom
KEFal

[1 e

52

Subwindow Interface

e A Subwindow needs to be able to

communicate with its parent window
and vice versa

e We need to build an interface
of public methods

* Inside a subwindow field method
on parent window

— Scfield refers to the subwindow
instance

* |nside a subwindow instance method

— Scwind refers to the parent
window instance

— Scinst refers to the subwindow
instance

53

@ Omnis

Using a Subwindow

e Select the Subwindows icon on the Component Store toolbar

* Drag required subwindow across and drop it on the window

e Set up any required Interface calls from the parent window to
the subwindow

Thademh Daw e 1@ X

Ao o Sl

54

@ Omnis

Initializing a Subwindow

e |Initialise a subwindow by calling a public method from the
container field Sconstruct method on the parent window

* Passinitial data as parameters

* This data may be used to initialise data to be displayed inside the
subwindow and other visual aspects of the subwindow instance
(e.g. colour of fields, enable/disable etc.)

A Window TRAINING.W_ParentWindow Field Sub_Calendar Methods

Modify Wiew Debug Options EBreakpoint Instances Skack
kv=zl2F 2|0 0 o

el I Do $cfield $init(con($cfield() $fullname,' $callback’), kWhite)

""" $event

=

- $calback
[+ D ate

35

@ Omnis
Subwindow Callback Method

* When an event occurs inside a

subwindow instance the event is AT e TR
not accessible to the parent e e Rt i
window event handlers p
13 Tav |
* We need to implement a callback i S
s o
to the parent window = S i et
) L (v AP « e &
* When subwindow init is called, = ver i A T
pass the full notational path of a
Eawssy/
Callback method that should be i S Yo oy ST
called when an event occurs in the e Do ol e 15 3 Qunbave ek
H e '.l"r: liul.?:l:;::) Wit iuin)
subwindow e =
* Path to callback method is cached e

by Sconstruct method in an
instance variable

e Callback method may receive data
from subwindow as parameters

56

@ Omnis

Combining Subwindows

i Calendar x|

e Subwindows can be combined

. . The date is |15 OCT 2002
with other fields on the same

] | Octaber j| 2002 j
wmdow Sun | Mon | Tue | Wed | Thu | Fri | Sat
24 30 1 2 3 4 g
e Other objects communicate
A Fi g g 10 11 12
with the Subwindow via the
. . 13 14 15 16 17 18 149
public interface s

. 20 21 22 23 24 25 2B
e The Subwindow can

communicate with other 7 B [W@ & |||
objects via the callback

57

@ Omnis

Table Classes

Instantiated as a row or list variable
— Table instance and row or list variable are one and the same

Instance created when row or list is defined
Do myRow.S$definefromsglclass (‘myTab’, ,pl,p2)

— Define from table class, not schema or query

— Parameters may be passed to Sconstruct method, note *,,
Incorporate a data interface via row or list
Methods provide an abstraction of SQL
Enable you to separate the data logic from the GUI

Public methods of table available via list or row
Do myRow.S$Sselect (con (“where myCol = ‘”,myRow.myCol,”’”))

In table method Scinst refers to instance and row or list variable
Instance destroyed when variable is cleared
— Sdestruct method does not run automatically

58

@ Omnis
Object Classes

* Similar capabilities to Table class instances but no
data interface (row variable or list)

* Instantiated as a variable of data type object
 May be statically or dynamically defined
* Instance destroyed when variable is cleared

e —Sdestruct method does not run automatically

59

Object Instances

e Static definition
— Define a variable of required scope
— Set data type to Object and set subtype to your object class
— Sconstruct method runs the first time that you call a method
* Dynamic definition
— Define a variable of required scope

— Set data type to object, leave subtype empty
Do Sclib.$objects.myObj.S$new () Returns myVar

— Snew method performs the same function as Sopen

— Sconstruct method runs when the instance is created by
Shew

@ Omnis
Storing Objects in the Database

* Since object is a standard data type object instances may be
stored in a database column

* Cannot identify object instances containing specific values
without reading all instances

 Bydefault

— The objects data (instance variables) are stored in the
database

— The methods are provided by the object class and may
change over time

* To save the methods in the database
— Set the object class Sselfcontained property to kTrue
— Takes a “snapshot” of methods in the class
— Stored objects occupy more space

61

Summary

* Application based on software objects
* |tis adifferent way to construct systems
* |tis a paradigm shift

* Itis atechnology
* More importantly it is a methodology
* Benefits

Reusability

Consistency

Maintainability

RAD (eventually once super classes have been created)

62

